最优投资决策的一个统计渐近算法

A STATISTICAL APPROXIMATION ALGORITHM OF THE OPTIMUM INVESTMENT STRATEGY

  • 摘要: 设\barX=(X1,…,Xm)为市场收益随机向量,具有联合概率分布F(\barx)=Fx1,…,xm),又设\barb=(b1,…,bm)为一个资本投资决策,其中bi≥0,ibi=1。称W(\barZ, \barb)=\int \log \left(\Sigma_k b_i \cdot x_i\right) d F\left(x_1, \cdots, x_n\right),为(\barX,\barb)的倍率.一个决策\barb*被称为是最优的,如W\left(\overline\mathrmX, b^*\right)=\max W(\overline\mathrmX, \barb)。资本投资的一个核心问题就是寻找最优的\barb*。许多论文都是在F(\barx)已知条件下讨论这个问题。本文首次给出关于\barb*m=2时的统计算法,并证明了这个估计量是一个一致统计量。

     

    Abstract: Let \barX=(X1,…,Xm) be a random vector representing stock market price with probability distribution functionF(\barx)=Fx1,…,xm), and let \barb=(b1,…,bm) be an investment strategy, where bi≥0, ibi=1. The W(\barX ; \barb)=\int \log \left(\Sigma_i b_i \cdot x_i\right) d F\left(x_1, \cdots, x_m\right) is said to be a doubling rate of (\barX, \barx). A strategy b* is satd to be optimumal on vector \barx (or distribution function F(\barx) if W\left(\barX ; \zeta^*\right)=\max \left\W(\barX ; \barb)\right., for all \left.\barb=\left(b_1, \cdots, b_m\right): b_i \geqslant 0, \Sigma_i b_i=1\right\.A core problem of the investment is to find the optimum strategy. The problem is considered in many papers under condition of the distribution function F(\barx) being known. In this paper, we give a statistical algorithm for the optimum strategy \barb* in the case of m=2. and have proved that the estimation is a uniformly distributed statistics.

     

/

返回文章
返回