矩阵损失下多元统计中期望向量的线性Minimax估计

The Linear Minimax Estimator of Mean Vector in Multivariate Statistics under Matrix Loss

  • 摘要:y1y2,…,yn,i.i.d.,Ey1β,Cov(y1)=∑,这里βRP和∑>0未知,我们估计β,估计类为L={∑i=1n Liyi:Lip阶常数方阵,i=1,2,…,n},损失函数为L_V_1, V_2(\beta, \Sigma ; \alpha)=\frac(d-\beta)^\prime(d-\beta)\operatornametr\left(\Sigma V_1\right)+\beta^\prime V_2 \beta,其中V1,V2>0已知,我们研究β的一个线性估计在L中的Minimax性.主要结果是1.当V2kV2k>0时,β的唯一的Ⅰ-型线性Minimax估计为Y/(1+√k),其中Y=\barY=\frac1n \sum_i=1^n y_i.2. 当V2kV2对所有k>0不成立,但V1V2V2V1时,β的Ⅰ-型线性Minimax估计不存在.3. 当V1V2V2V1时,β的Ⅱ-型线性Minimax估计为(V11/2+V21/2)-1V11/2Y,这个估计在V1,V2满足条件V1V2V2V1下变化时,构成了集合{AY:A对称,A的特征根均在(0,1)中}.4.对于一般的V1,V2,(V11/2+V21/2)-1V11/2Y仍是β的Ⅱ-型线性Minimnax估计,这个估计在V1,V2任意变化时,构成了集会{AY:A的特征根是实的,特征根全在(0,1)中,且A只具有线性初等因子}。

     

    Abstract: Let y1y2,…,yn be i.i.d., Ey1β,Cov(y1)=∑, where βRP and ∑ > 0 are unknown. We estimate β The class of estimation is L={∑i=1n Liyi:Li is a p-order constant matrix, i =1, 2,…, n. The loss function is L_V_1, V_2(\beta, \Sigma ; d)=\frac(d-\beta)(d-\beta)^\prime\operatornametr\left(q \Sigma V_1\right)+\beta^\prime V_2 \beta, whereV1,V2 are known. We study the minimaxity of a linear estimator of β inL .The main results are 1. When V2kV2k>0, the only Ⅰ-type linear minimax estimator of β inL is Y/(1+√k ),where Y=\barY=\frac1n \sum_i=1^n y_i.2. When V2kV2 is failed for all k >0, but V1V2V2V1, the Ⅰ-type linear minimax estimator of β in L dosn’t exist.3. When V1V2V2V1, the Ⅱ-type linear minimax estimator of β in L is(V11/2+V21/2)-1V11/2Y .These estimators constitute a set AY:A is symmatric and all latent roots of A belong to (0, l)when both V1 and V2 vary under subjection of V1V2V2V1.4. For general V1 and V2,(V11/2+V21/2)-1V11/2Y, is also a Ⅱ-type linear minimax estimator of β in L. These estimators constitute a set AY: all latent roots of A are real and belong to (0,1), and A only has linear element factors when both V1 and V2 vary

     

/

返回文章
返回