Abstract:
Let
y1,
y2,…,
yn be i.i.d., E
y1=
β,Cov(
y1)=∑, where
β∈
RP and ∑ > 0 are unknown. We estimate
β The class of estimation is
L={∑
i=1n Liyi:
Li is a
p-order constant matrix,
i =1, 2,…,
n. The loss function is L_V_1, V_2(\beta, \Sigma ; d)=\frac(d-\beta)(d-\beta)^\prime\operatornametr\left(q \Sigma V_1\right)+\beta^\prime V_2 \beta, where
V1,
V2 are known. We study the minimaxity of a linear estimator of
β in
L .The main results are 1. When
V2=
kV2,
k>0, the only Ⅰ-type linear minimax estimator of
β in
L is
Y/(1+√
k ),where
Y=\barY=\frac1n \sum_i=1^n y_i.2. When
V2=
kV2 is failed for all
k >0, but
V1V2=
V2V1, the Ⅰ-type linear minimax estimator of
β in
L dosn’t exist.3. When
V1V2=
V2V1, the Ⅱ-type linear minimax estimator of
β in
L is(
V11/2+
V21/2)
-1V11/2Y .These estimators constitute a set
AY:
A is symmatric and all latent roots of
A belong to (0, l)when both
V1 and
V2 vary under subjection of
V1V2=
V2V1.4. For general
V1 and
V2,(
V11/2+
V21/2)
-1V11/2Y, is also a Ⅱ-type linear minimax estimator of
β in
L. These estimators constitute a set
AY: all latent roots of
A are real and belong to (0,1), and
A only has linear element factors when both
V1 and
V2 vary