随机变量的负超可加相依及其应用

Negatively Superadditive Dependence of Random Variables with Applications

  • 摘要: 一个随机向量 X=(X1, X2,..., Xm)称为负超可加相依(NSD),如果对每个超可加函数ϕ, EϕX1, X2,..., Xm)≤5 EϕY1, Y2,..,Ym)其中Y1, Y2,..,Ym相互独立且对任意i,Y_i \stackreld= X_i 本文研究了NSD的基本性质,给出了NSD判定的三个结构性定理,并且这些定理可用来证明许多著名的多元分布具有NSD性质,本文还给出了NSD的许多概率不等式。

     

    Abstract: A random vector X =(X1,X2,...,Xm) is said to be negatively superadditive dependent (NSD) if for every superadditive function ϕ, EϕX1, X2,..., Xm)≤5 EϕY1, Y2,..,Ym) where Y1, Y2,..,Ym are independent with Y_i \stackreld= X_i for each i. Some basic properties and three structural theorems of NSD are derived and applied to show that a number of well-known multivariate distributions possess the NSD property. Applications are also presented.

     

/

返回文章
返回