连续型CmGm(||X||)2 multiply fromi=1 to m |xi|2ri-1的投影寻踪随机经验分布的极限分布

THE LIMIT DISTRIBUTIONS OF EMPIRICAL DISTRIBUTIONS OF RANDOM PROJECTION PURSUIT OF CONTINUOUS FORM CmGm(||X||)2 multiply fromi=1 to m |xi|2ri-1

  • 摘要: Xm维随机向量,X1,X2,…,Xn是来自母体X的子样;ZNm(0,Im),Bm>0为实数列,经验分布\hatF_n^Z / B m(x)=\frac1n \#\left\i: Z^\prime X_4 / B_mX>的密度函数为C_m G_m\left(\|X\|^2\right) \prod_i=1^m\left|x_i\right|^2 r-1,每个ri>0,那么\hatF_n^2 B m(x) \xrightarrowP N\left(0, \sigma^2\right)或\hatF_n^Z / B m(x) \xrightarrowP \mathscrL\left(T_k\right),其中\mathscrL\left(T_k\right)为具有自由度为k的学生在Tk分布。

     

    Abstract: Let X= (x1, x2, …, xm), be a m-dimensional random vector, X1, X2, …, Xn subsamples from the population X, the m-dimensional random vector Z have the Nm(0, Im) distribution and Bm>0 be a sequence of real numbers. Let \hatF_n^Z / B m(x)=\frac1n \#\left\i: Z^\prime X_i / B_mri>0 then \hatF_n^2 B m(x) \xrightarrowP N\left(0, \sigma^2\right) or \hatF_n^Z / B m(x) \xrightarrowP \mathscrL\left(T_k\right),as n→∞, m→∞, where фTk) is the Student distrbution Tk with k degrees of freedom.

     

/

返回文章
返回