p函数类的点乘和点幂运算

POINTWISE MULTIPLICATION AND POWER ON THE CLASS OF d-FUNCTIONS

  • Abstract: Using a new simpler analytic method, we prove that the Kn-functioon class (n=1, 2, …) and also p-function class defined on an additive semigroup T are respectively closed under pointwise multiplication. At the same time we obtain the following inequalities: if p is a Kn-function defined on T, then \begingatheredF_k\left(t_1, \cdots, t_k ; \boldsymbolp^r\right) \geqslant\leftF_k\left(t_1, \cdots, t_k ; \boldsymbolp\right)\right^r,(k=1,2, \cdots, n) \\ \sum_k=1^n F_k\left(t_1, \cdots, t_k ; \boldsymbolp^r\right) \leqslant\left\sum_k=1^n F_k\left(t_2, \cdots, t_k ; \boldsymbolp\right)\right^r,\endgathered, where r is a positive integer and t1, …, tnT. Moreover, for the kn-function p defined ou T, these inequalities are also true for every real number r≥1.

     

/

返回文章
返回