Abstract:
Using a new simpler analytic method, we prove that the
Kn-functioon class (
n=1, 2, …) and also
p-function class defined on an additive semigroup
T are respectively closed under pointwise multiplication. At the same time we obtain the following inequalities: if
p is a
Kn-function defined on
T, then \begingatheredF_k\left(t_1, \cdots, t_k ; \boldsymbolp^r\right) \geqslant\leftF_k\left(t_1, \cdots, t_k ; \boldsymbolp\right)\right^r,(k=1,2, \cdots, n) \\ \sum_k=1^n F_k\left(t_1, \cdots, t_k ; \boldsymbolp^r\right) \leqslant\left\sum_k=1^n F_k\left(t_2, \cdots, t_k ; \boldsymbolp\right)\right^r,\endgathered, where
r is a positive integer and
t1, …,
tn∈
T. Moreover, for the
kn-function
p defined ou
T, these inequalities are also true for every real number
r≥1.