一类半线性方程的Dirichlet问题
THE DIRICHLET PROBLEMS OF A CLASS OF SEMILINEAR EQUATIONS
-
摘要: 本文利用概率方法证明了如下的 Dizihclet 问题的解的存在性:\left\\beginarrayl-\left(\frac\Delta2+\mu\right) u+f(u)=\nu, \text 在 D \text 中, \\ \left.u\right|_O D=g,\endarray\right.,其中D 是Rd中的一个有界规则区域,μ和 v 是属于广义 Kato 类的符号测度,f是R1上的连续可微函数连g是\partial D上的一个连续函数。Abstract: In this paper we proved the exstence of solutions to the following Diriehlet problem: \left\\beginarrayl-\left(\frac\Delta2+\mu\right) u+f(u)=\nu, \quad \text in D, \\ \left.u\right|_\partial D=g,\endarray\right. where D is a bounded regular domain of Rd,μ and v are signed measures belonging to the generalizead Kato class GKd,f is a continuously differentiable function on R1,g is a continuous function on \partial D.The main tools are Dirichlet forms and Markov processes.