独立随机变量序列重对数律的一个注记
A Note About the Law of the Iteravated Logarithm for independent Random
-
摘要: {Xi}为独立随机变量序列,E(Xi)<+∞,E(Xi2)<+∞(i=1,2,…),当中心极限定理中的余项△n=O((lnBn lnlnBn…(lnkBn)1+δ)-1)时,本文得出结论:\overline\lim \fracS_n\sqrt2 B_n \ln \ln B_n=1 \quad a.s..Abstract: Let Xi be a sequences of independent random variable with E(Xi) = 0, E(Xi2) < ∞ (i = 1, 2,… ), where the remainder of the central limit theorem is: △n=O((lnBn lnlnBn…(lnkBn)1+δ)-1), we prove the result as follow:\overline\lim \fracS_n\sqrt2 B_n \ln \ln B_n=1 \quad a.s..