定价问题和一类倒向随机微分方程解的存在唯一性

Pricing Problem and Existance/Uniqueness of Backward Stochastic Differential Equations

  • 摘要: 本文建立了由一个多维Brown运动、Poisson过程和跳时固定的简单点过程共同驱动的股票价格模型。在此模型下,将未定权益的定价问题归结为一类倒向随机微分方程的求解问题。证明了这类倒向随机微分方程适应解的存在唯一性问题,并给出了一个关于未定权益的定价公式。

     

    Abstract: In this paper, the option pricing problem in a complete financial market containing a bond and a finite number of stocks whose prices are driven by a multidimensional Brownian motion process, a multidimensional Poisson point process and a multidimensional Step point process is set. Under the frame of this market, we reduce the pricing problem to solution problem of a backward stochastic differential equation(BSDE). Moreover, the existence and uniqueness of the solution of this BSDE are proven.

     

/

返回文章
返回