摘要:
本文在椭球等高分布假定下,讨论了二次型
X'AX(
A为对称阵)的非中心Cochran定理。主要结果如下: 若
X~
ECn(
μ,
Ln;
g),
g(
x)>0为
x的连续函数,且
X有有限的2
n阶矩。
Ai,
i=1,2,…,
m为
n×
n对称阵。
A=∑
Ai,
λ1,…,
λk互不相同且非零。考虑下面的条件: (a) \mathrmX^\prime A_i \mathrmX \stackreld= \sum_j=1^k \lambda_j y_i j,\left(y_i 1, \cdots, y_i k\right)^\prime \sim G x^2\left(n_i 1, \cdots, n_i k ; \delta_i 1^2, \cdots, \delta_i k^2 ; g\right) j=1, \cdots, m.(b) \left(\mathrmX^\prime A_1 \mathrmX, \cdots, \mathrmX^\prime A_m \mathrmX\right) \stackreld=\left(\sum_j=1^k \lambda_j z_j, \cdots, \sum_g=(m-1) b+1^m i k \lambda_f-(m-1) k z_j\right)\left(\varepsilon_1, \cdots, z_m k\right)^\prime \sim G \chi^2\left(n_11, \cdots, n_1 k, n_21, \cdots, n_m k ; \delta_11^2, \cdots \delta_1 k^2, \delta_21^2, \cdots, \delta_m k^2 ; g\right)(c) \mathrmX^\prime A \mathrmX \underset\int_jd \sum_j=1^k \lambda_f y_j,\left(y_1, \cdots, y_k\right)^\prime \sim G \chi^2\left(n_1, \cdots, n_k ; \delta_1^2, \cdots, \delta_k^2 ; g\right)(d) r(A)=\Sigma r\left(A_i\right)=\Sigma \Sigma r\left(A_i E_j\right), A=\Sigma \lambda_j E_j, E_j^2=E_g, E_g E_y=0, j \neq j^\prime=1, \cdots, k,(e) k 个等式 n_j=\Sigma n_i j 中至少掎 k-1 个成立. 则(I) (a),(b) \Rightarrow(c),(d),(e),(II) (a), (c), (e) \Rightarrow(b),(d),(III) (b),(c) \Rightarrow(a),(d),(b),(IV) (c),(d) \Rightarrow(u),(b),(c).