正态-逆Wishart先验信息下多元线性模型的后验似然比检验

Posterior Likelihood Ratio Tests for Multivariate Linear Model Based On Normal-Inverse Wishart Prior

  • 摘要: 在正态-逆Wishart先验信息下考虑多元正态线性模型Y-Nn×m(XB,In⊗∑)的参数矩阵B的线性假设检验问题,根据B的后验概率分布构造了关于B的两种线性假设的后验似然比检验,所得检验统计量是矩阵F-分布的特征值函数.

     

    Abstract: The problem of linear hypothesis testing of the multivariate normal linear model Y-Nn×m (XB, In⊗∑) is considered under the normal-inverse Wishart prior distribution of the parameter matrices (B,∑). Two posterior likelihood ratio tests for the linear hypothesis about the parameter matrix B are constructed. The likelihood ratio statistics obtained from the posterior distribution of B are functions of the characteristic roots of the random matrices which have matric F-distribution.

     

/

返回文章
返回