相依随机变量的密度函数的递归核估计的渐近正态性
ASYMPTOTIC NORMALITY OF RECURSIVE KERNEL DENSITY ESTIMATES UNDER DEPENDENT ASSUMPTIONS
-
摘要: 设Xn;n≥1为同分布的ρ-混合序列,其未知密度f(x)的递归核估计为: f_n(x)=\frac1n \sum_j=1^n h_j^-1 K\left(\fracx-X_jh_j\right),本文在适当的条件下,讨论由fn(x)所产生的随机元的有限维渐近正态性。Abstract: Let X1, …, Xn be random samples from an unknown density funotion f(x). The recursive kernel density function estimator can be obtained by putting f_n(x)=\frac1n \sum_j=1^n h_j^-1 K\left(\fracx-X_jh_j\right), where K is a univariate kernel funotion, and hn is a sequence of positive numbers converging to zero. In the paper, the asymptotio multi-normality of gn(x) is given in the case of dependent sample, where gn(x)=(f(x)-Efn(x))/(var(fn(x)))1/2.