相依随机变量的密度函数的递归核估计的渐近正态性

ASYMPTOTIC NORMALITY OF RECURSIVE KERNEL DENSITY ESTIMATES UNDER DEPENDENT ASSUMPTIONS

  • 摘要:Xn;n≥1为同分布的ρ-混合序列,其未知密度fx)的递归核估计为: f_n(x)=\frac1n \sum_j=1^n h_j^-1 K\left(\fracx-X_jh_j\right),本文在适当的条件下,讨论由fnx)所产生的随机元的有限维渐近正态性。

     

    Abstract: Let X1, …, Xn be random samples from an unknown density funotion fx). The recursive kernel density function estimator can be obtained by putting f_n(x)=\frac1n \sum_j=1^n h_j^-1 K\left(\fracx-X_jh_j\right), where K is a univariate kernel funotion, and hn is a sequence of positive numbers converging to zero. In the paper, the asymptotio multi-normality of gnx) is given in the case of dependent sample, where gnx)=(fx)-Efnx))/(var(fnx)))1/2.

     

/

返回文章
返回