回归函数改良核估计的渐近分布
Asymptotic Distribution of the Improved Kernel Regression Function Estimates
-
摘要: 设(X1,Y1),…,(Xn,Yn)是来自二元总体(X,Y)的样本,若EY<∞,则回归函数m(x)=E(Y|X=x)存在.在本文中,考虑m(x)的改良核估计:\widehatm_n(x)=\sum_i=1^n Y_i I(Yi<bn)K(\fracx-X_ih_n)/\sum_i=1^n Y_i IK(\fracx-X_ih_n) 其中K是一元概率密度,0< hn → 0,0 <bn → ∞(n→∞)我们分别在i.i.d.和平稳ϕ-mixing相依情况下,得出了^mn(x)的渐近分布。Abstract: Suppose that (X1, Y1),…, (Xn, Yn) is a random sample sequence from (X, Y), If EY is finite, the regression function m (of Y on X) is defined by m(x)= E(Y|X = x). In this paper, we obtain the asymptotic normality of the improved kernel regression function estimates \widehatm_n(x)=\sum_i=1^n Y_i I(Yi<bn)K(\fracx-X_ih_n)/\sum_i=1^n Y_i IK(\fracx-X_ih_n) . Where K is a univariate density function, 0 < hn → 0 and 0 <bn → ∞ (n → ∞).