局部平方可积鞅的Chung重对数律

The Chung Law of the Iterated Logarithm for Locally Square Integrable Martingales

  • 摘要:X = (Xt,t≥ 0)为局部平方可积鞅,且Xo = 0,<X,Xt为其二阶可料变差。利用连续半鞅的强逼近结果,我们证明了在较弱的条件下,X的Chung重对数律成立,即\mathrmP\left(\liminf _t \rightarrow \infty \frac\sup _0 \leq s \leq t\left|X_s\right|\left(\langle X, X\rangle_t / \log \log (X, X\rangle_t\right)^1 / 2=\frac\pi\sqrt8\right)=1

     

    Abstract: Let X = (Xt,t≥ 0) be a locally square integrable martingale with Xo = 0. The predictable quadratic variation of X is<X,Xt. Using the strong approximation result for continuous time semimartignales, we prove that if the jumps of X satisfy certain assumptions, the Chung law of the iterated logarithm for the locally square integrable martingale holds,that is \mathrmP\left(\liminf _t \rightarrow \infty \frac\sup _0 \leq s \leq t\left|X_s\right|\left(\langle X, X\rangle_t / \log \log (X, X\rangle_t\right)^1 / 2=\frac\pi\sqrt8\right)=1.

     

/

返回文章
返回