二参数ORNSTEIN-UHLENBECK过程在射线上的导出过程

PROCESSES INDUCED BY AN ORNSTEIN-UHLENBECK PROCESS WITH TWO PARAMETERS ON THE RAYS

  • 摘要: 本文证明了二参数ORNSTEIN-UHLENBECK过程在射线上导出的过程是马氏过程,并求出了它的转移密度。同时证明了它为oup1的充要条件及它是弱平稳过程的充要条件。

     

    Abstract: Let X(s, t)=e^-\alpha s-\beta t\leftX_0+\sigma \int_0^s \int_0^t e^\alpha a+\beta b d w(a, b)\right be an Ornstein-Uhlenbeck Process with two parameters (oup2). Let l: t=λs+Ts≥0) be a ray, and λ and c two nonnegative constants. Y=Xs,λs+c),s≥0, is the process induced by Xs, t) on the ray l. Y is a Marker Process and its transition density is calculated. It is proved that Y is oup1 if and only if λ=0, c>0, and Y is a weakly stationary Process if and only if \lambda=0, \quad c=\frac\ln \left(\sigma^2+4 \alpha \beta E X_0^2\right)-2 \ln \sigma2 \beta.

     

/

返回文章
返回