关于最近邻回归估计的收敛速度
ON THE CONVERGENCE RATE OF THE NEAREST NEIGHBER REGRESSION FUNCTION ESTIMATOR
-
摘要: 设(X,Y),(X1,Y1),(X2,Y2),…为取位于 Rd×R1上的 iid.随机向量序列,E|Y|<∞.本文研究了回归函数 m(x)的最近邻估计 mn(x)的强收敛速度问题,在一定条件下证明了它满足重对数律,即\limsup _n \rightarrow \infty \frac\left|m_n(x)-m^i \cdot c\right| i\left(2 \sum_j=1^k \nu_m^2 \log \log n\right)^1 / 2 \leqslant(2 \operatornamevar(Y \mid X=x))^1 / 2 a. в.Abstract: Let(X,Y),(X1,Y1),(X2,Y2),…be a sequence of iid.Rd×R1-valued random vectors with E|Y|<∞.This paper investigats the pointwise strong convergence rate of the nearest neighbor regression function estimator and its iterated logarithm-type rate is obtained,i. e,,under certain conditions \limsup _n \rightarrow \infty \frac\left|m_n(x)-m^i \cdot c\right| i\left(2 \sum_j=1^k \nu_m^2 \log \log n\right)^1 / 2 \leqslant(2 \operatornamevar(Y \mid X=x))^1 / 2 a. в.