Ӧ�ø���ͳ�� 2013, 29(6) 570-580 DOI:      ISSN: 1001-4268 CN: 31-1256

����Ŀ¼ | ����Ŀ¼ | ������� | �߼�����                                                            [��ӡ��ҳ]   [�ر�]
ѧ������
��չ����
������Ϣ
Supporting info
PDF(415KB)
[HTMLȫ��]
�����[PDF]
�����
�����뷴��
�ѱ����Ƽ�������
�����ҵ����
�������ù�����
����
Email Alert
���Ĺؼ����������
������
E����
һ������
�������.
���������������
PubMed
����ANOVA��άģ�͵�������Ƶ�������
��ѩƽ, �ֽ��, ������
���ϴ�ѧ��ѧϵ, ������ѧԺ��ѧϵ, ����ƾ���ѧͳ��ѧԺ
ժҪ��

ȫ��������ָ����ȫ�������Է�����ռ����Ҫ�ĵ�λ,
Wang��(2012)֤������������ڹ��Ʋ���ʱ����A����,
������֤����������ڹ��Ʋ���ʱ��һЩ������������,
�������Ʋ�����E���ź͹��Ʋ�����һ��������.
��ģ����֤��, ���������������������������һ���������,
���õ��˽Ϻõ�����, �������ƫ�������˾���.

�ؼ����� ������   E����   һ������   �������.  
Optimal Properties of Orthogonal Arrays Based on ANOVA High-Dimensional Model Representation
Chen Xueping, Lin Jinguan, Wang Xiaodi
Department of Mathematics, Southeast University; Department of Mathematics, Jiangsu University of Technology; School of Statistics, Central University of Finance and Economics
Abstract:

Global sensitivity indices play important
roles in global sensitivity analysis based on ANOVA high-dimensional
representation, Wang et al. (2012) showed that orthogonal arrays
are A-optimality designs for the estimation of parameter ,
the definition of which can be seen in Section 2. This paper
presented several other optimal properties of orthogonal arrays
under ANOVA high-dimensional representation, including E-optimality
for the estimation of  and universal optimality for the
estimation of , where  is the independent
parameters of . Simulation study showed that randomized
orthogonal arrays have less biased and more precise in estimating
the confidence intervals comparing with other methods.

Keywords:
�ո�����  �޻�����  ����淢������  
DOI:
������Ŀ:

ͨѶ����: ��ѩƽ
���߼��:
����Email:

�ο����ף�
�������������

Copyright by Ӧ�ø���ͳ��